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Spatio-temporal dynamics of acoustic
cavitation bubble clouds

By U. Parlitz1, R. Mettin1, S. Luther1, I. Akhatov2,
M. Voss1 and W. Lauterborn1

1Drittes Physikalisches Institut, Universität Göttingen, Bürgerstr. 42–44,
37073 Göttingen, Germany

2Ufa Branch of Russian Academy of Sciences and Bashkir University,
K. Marx Str. 6, Ufa, 450000, Russia

Bubble clouds forming in an extended volume of liquid in acoustic cavitation show a
slowly varying filamentary structure, whose origin is still not completely understood.
Experimental observations are reported that provide some characteristics of the phe-
nomenon, such as bubble distributions and sound-field measurements. A discussion
of relevant physical interactions in bubbly liquids is comprised of wave dynamics,
Bjerknes and drag forces, nucleation and coalescence. For describing the structure
formation process, continuum and particle approaches are employed. In the frame-
work of the continuum model it is shown that homogeneous bubble distributions are
unstable, and regions with high bubble concentration emerge in the course of a self-
concentration process. In the particle model, all bubbles are treated as interacting
objects that move in the liquid. This approach is complementary to the contin-
uum model. It allows the inclusion of some particular features, for instance Bjerknes
forces based on nonlinear bubble oscillations. Both models are discussed and results
are compared with experimentally observed patterns.

Keywords: structure formation; chaotic dynamics; Bjerknes forces;
wave equation; particle model

1. Introduction

The onset of acoustic cavitation is usually defined as the inception of bubbles in an
otherwise uniform acoustically irradiated liquid. The threshold amplitude of sound
pressure for this process depends on many parameters like the frequency of the sound,
type of liquid, amount of dissolved gas and impurities, or static pressure. However,
a robust almost universal phenomenon shown by the once generated acoustic cav-
itation bubbles is the formation of structures. The spatial distribution of bubbles
in the observed clouds is usually not homogeneous. Instead, filamentary patterns of
streaming bubbles emerge like that shown in figure 1.

The generic emergence of bubble structures in high-intensity sound fields is visu-
ally striking, and also the study of such inhomogeneous spatial bubble distributions
is relevant for many technical and chemical applications of ultrasound in liquids
(Mason, this issue). Nevertheless, a detailed understanding of the mechanisms lead-
ing to this self-organizing phenomenon has only begun recently. In this paper, we
would like to acquaint the reader with experimental results, physical background and
the complexity of the phenomenon, and highlight the research pathway undertaken
to gain a deeper understanding.
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Figure 1. Structure of streaming bubbles (‘acoustic Lichtenberg figure’) emerging in a standing
acoustic wave. Bright regions correspond to light scattered by the bubbles (2 ms exposure time).

A complete consideration of spatio-temporal dynamics of acoustically driven multi-
bubble systems includes several time-scales and spatial scales. The slowest time-scale
is specified by the drift of the filaments, or rearrangement time of the structures,
which is in the range of 0.1 to several seconds. The relaxation time of bubble motion
gives an intermediate time-scale in the range of 10−2–10−3 s. A fast scale is defined
by the period T of the acoustic driving, T ≈ 10−4–10−5 s. Even faster are effects
connected with a strong bubble collapse (10−9 s) or accompanying light emission
(10−10 s). In our experiments, the macroscopic spatial scale is characterized by the
acoustic wavelength and the boundary conditions that amount to centimetres. A
mesoscopic scale is given by typical distances between bubbles and ranges between
0.1 and 1 mm, and bubble radii define a microscopic spatial scale of about 10−5 m.
Further sub-microscales are relevant in connection with strong collapse and light
emission (below 1 µm). On these smallest scales we find the cavitation nuclei and
microbubbles, not visible in the structures but responsible for cavitation in the con-
sidered pressure regime.

The process we are interested in has temporal as well as spatial structure for-
mation aspects. The temporal aspect is given by the occurrence of subharmonic
and low-dimensional chaotic response, e.g. due to a period-doubling cascade. This
is detectable for individual bubble oscillations and for the averaged sound emission.
The spatial aspect is manifested in the evolution of dendritic filamentary structures
consisting of hundreds or thousands of individual cavitation bubbles. The evolving
pattern, visible to the naked eye, is small compared to the (wave-) length of macro-
scopic disturbances but large compared to the inter-bubble distance. It is structurally
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stable on time-scales large compared to the bubble oscillations. Thus one may ask:
how do the individual microscopic oscillations and motions of the cavitation bub-
bles evolve into a macroscopic and coherent structure, and how does the structure
influence the individual bubbles?

2. Experimental observations

The structures we are interested in can best be observed in standing pressure waves.
A closer examination of examples like that shown in figure 1 reveals roughly the
following.

Most of the bubbles are generated at impurities that reside at boundaries like the
vessel walls or the hydrophone. Such locations will be called ‘nucleation sites’ in the
following. From the nucleation sites, the bubbles move in the direction of a pressure
antinode, where a cluster of bubbles occurs. Note that, in general, the bubbles are
so small when created at the nucleation sites that they appear ‘invisible’. During
their motion to the central cluster, however, they reach a region of higher pressure
amplitude that lets them oscillate to a visible maximum size. The locations where
the bubbles become visible for the first time will be called ‘emerging sites’ in order to
avoid misinterpretation of experimental observations. The emerging sites are located
at approximately the same distance from the pressure antinode. Because all the
bubbles that can be traced from an emerging site follow almost identical paths,
a ‘streamer’ (Flynn 1964; Neppiras 1980) becomes visible. The streams of bubbles
join and finally unite in the cluster. The whole structures resemble certain electrical
discharge or lightning patterns, and we therefore call them ‘acoustic Lichtenberg
figures’ (ALFs) in the following, in analogy to the well-known electrical Lichtenberg
figures†. These patterns are considered ‘stable’, because in experimental observations
(Lauterborn et al . 1993, 1997) the structures, including the fingers of moving bubbles,
stay roughly the same on a time-scale of fractions of a second up to seconds, before
any subsequent visible changes occur. This is much longer than the acoustic field
period and about what we estimate to be the travel time of a bubble to the centre.
While in a stable pattern, many bubbles appear one after the other at about the
same position in space and subsequently take almost identical paths to a cluster.

Only at very low pressure amplitudes in fresh tap water containing many sub-
merged bubbles will the instreaming bubbles form a larger one that leaves the centre
after reaching a certain critical size. In a typical ALF, however, we observe only
some kind of ‘microbubble mist’ leaving the central cluster (visible as a bright halo
in the middle of figure 1). This happens despite the prediction that very small bub-
bles should be attracted towards a pressure antinode. We suspect that the small
bubbles in the mist, fragments of the larger bubbles, are weakly attracted to the
pressure antinodes such that they may be advected outward by the liquid motion.
This observation seems to answer, in part, the questions about mass conservation of
the instreaming gas in the bubbles. The motion of liquid might participate in some
more aspects of cavitation structures, but it is more difficult to investigate than the
bubble motion. Simple methods, like ink drops, indicate that liquid velocities appar-
ently increase by an order of magnitude at the cavitation threshold, and that the
streaming near the pressure antinode is much faster than near the container walls.

† Structures without a central cluster are also possible as we will report later on.
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Figure 2. Experimental arrangement for cavitation structure investigations.
The water volume is 5 cm× 5 cm× 5 cm.

The arrangement used for the experiments presented in this article is shown in
figure 2. The transparent rectangular container is open at the top, and the water
fill-height equals the base length to yield an approximately cubic water volume.
(Similar results have also been obtained with other geometries like cylindrical or
spherical vessels.)

The sound field is generated by a piezoelectric element driven sinusoidally at about
20 kHz. The frequency is adjusted to the (111) mode, and a standing wave occurs
with pressure antinode in the middle of the cuvette. The bubble structures are illu-
minated from the outside, and pictures of the scattered light were taken with a CCD
camera. The filaments that can be seen by the naked eye (see figure 1) represent
bubble trajectories where single bubbles are not resolved. If snapshots with a shorter
exposure time (ca. 3 µs) are taken, it becomes apparent that the filaments are only
sparsely populated (compare with figure 3). At the same time as the optical obser-
vation, the acoustic signal can be measured by using a small hydrophone (Brüel
& Kjaer 8103) located near a corner of the cuvette. The hydrophone measures the
emissions of the transducer and of all bubbles, each scattering sound waves while
oscillating and possibly emitting shock waves at strong collapse. Thus, there are
many individual sources contributing to the signal.

In figure 3, we compare acoustic measurements with the observed patterns. Mea-
sured time-series s(t) from the hydrophone were taken with a sampling time of ∆t =
200 ns. A three-dimensional delay embedding (Takens 1980; Sauer et al . 1991; Lauter-
born & Parlitz 1988; Lauterborn & Holzfuss 1991) x(t) = (s(t), s(t − τ), s(t − 2τ))
of such a time-series with a delay time τ = 8∆t = 1.6 µs is given in figure 3b.
This reconstruction of the dynamics provides strong evidence for the existence of a
low-dimensional attractor, at least for the time covered by the time-series (10 000
samples, corresponding to 2 ms). This period of time is small compared to the typi-
cal time-scale on which the ALF changes its shape, and we can therefore assume the
system (i.e. the bubble configuration and its acoustic coupling) to be stationary. On
a longer time-scale (greater than 0.1 s), however, the branches of the ALF move and
the bubble distribution changes. This can be seen in figure 3c, taken a few seconds
after figure 3a. Figure 3d shows a delay reconstruction of the corresponding time-
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series. The shape of the reconstructed attractor differs considerably from that shown
in figure 3b, and thus the change of the ALF comes with a change of the dynamics
of the coupled bubble oscillations and of the sound emission by the oscillating bub-
bles. Besides acoustic measurements, additional evidence for low-dimensional (i.e.
uni sono, synchronized) behaviour of the bubbles has been given by optical measure-
ments (scattered-light intensity and high-speed holography). We refer to Ohl et al .
(this issue).

These observations raise several questions. Why, at least on short time-scales, is
the dynamics of the system of hundreds or thousands of coupled bubbles so low
dimensional? Are there stages of the evolution of the ALF during which the acoustic
signal cannot be characterized as low dimensional? What are the dynamical proper-
ties of the long-term evolution of the ALF? To address these questions, both acous-
tic and optical long-term measurements and numerical simulations are needed; they
became possible only recently. We suspect that the observed low dimensionality of
the dynamics might be a result of synchronization phenomena, in particular chaotic
phase synchronization (Rosenblum et al . 1996; Parlitz et al . 1996). Furthermore,
we conjecture that the long-term evolution of the ALF is not a low-dimensional
phenomenon.

3. Physical interactions in bubbly liquids

In order to develop a theoretical model of the structure-formation process described
in the previous section, many physical mechanisms and features have to be consid-
ered. In this section, we briefly present those mechanisms that constitute the building
blocks of the continuum and particle models to be introduced in the following sec-
tions.

(a) Nonlinear spherical-bubble oscillations

Bubbles that are subject to periodic sound fields with medium- or high-pressure
amplitude oscillate strongly nonlinear, including complex shape oscillations (Plesset
1954; Strube 1971; Prosperetti 1977). For simplicity, we assume here that the shape
of the bubbles remains spherical and use the model of Keller & Miksis (1980):(
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c

)
RR̈+ 3

2 Ṙ
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− p0 − 2σ
R
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R
Ṙ− pa(t),

pa(t) = Pa cos(ωt),

 (3.2)

for air bubbles in water at 20 ◦C with the polytropic exponent κ = 1.4, surface tension
σ = 0.0725 N m−1, liquid density ρ = 998 kg m−3, viscosity µ = 0.001 Ns m−2,
ambient pressure p0 = 100 kPa, sound velocity in the liquid c = 1500 m s−1 and a
driving frequency of ω = 2π · 20 kHz†.

For bubbles whose equilibrium radius R0 fulfils the condition 4µ/ρc � R0 �
c/ω = λ/2π, and small amplitudes Pa � p0 of the external sound-field, a linearization

† For the Gilmore model (Gilmore 1952) qualitatively the same results have been obtained.
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(a)

(c)

(b)

(d)

Figure 3. (a) and (c) show consecutive snapshots of the bubble structure that are separated in
time by a few seconds. The pictures have been black/white inverted for better visibility. (b) and
(d) show corresponding three-dimensional attractor reconstructions from the hydrophone signal.

of the Keller–Miksis model with R(t) = R0 +R′(t) yields the equation

R̈′ + αṘ′ + ω2
0R
′ = − Pa

ρR0
cos(ωt), (3.3)

where

ω2
0 =

1
ρR2

0

[
3κp0 +

2σ
R0

(3κ− 1)
]
, α =

4µ
ρR2

0
+
ω2

0R0

c
. (3.4)

As can be seen from equation (3.4), the role of ω0 and R0 can be exchanged: for
fixed bubble size R0, we can speak of a linear resonance frequency ω0, and for fixed
frequency ω, we can find a linear resonance bubble radius Rr = R0 via (3.4). The
relationship is approximated (for normal air pressure and for water, neglecting σ) by
the easily memorizable form ν0Rr ≈ 3 ms−1 with ω0 = 2πν0.

(b) Dynamics of acoustic waves in bubbly liquids

A bubbly liquid may be considered a continuum (in an average sense) when bub-
ble sizes and inter-bubble distances are small compared to the distances over which
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the macroscopic quantities of the mixture change. On the basis of such assumptions,
van Wijngaarden (1968) heuristically derived equations of motion for bubbly liquids
that were confirmed by Caflish et al . (1985) using a more mathematically rigorous
derivation (see also Nigmatulin 1991). These equations are valid for a weakly com-
pressible fluid where the volume fraction of gas, α, is small, and they may be used
to derive the following wave equation for the pressure p in the mixture (Commander
& Prosperetti 1989):

1
c2
∂2p

∂t2
−∆p = 4πρ

∫ ∞
0

R̂2
0N(x, R̂0)R̈ dR̂0, (3.5)

where the speed of sound c and the density of the pure liquid ρ are assumed to be
constant. N(x, R̂0) gives the probability density for finding a bubble with equilibrium
radius R̂0 at the point x. For a monodisperse mixture of bubbles of size R0 we obtain
with N(x, R̂0) = N0n(x)δ(R̂0 −R0)

1
c2
∂2p

∂t2
−∆p = 4πρN0nR

2
0R̈ =

ω2
0

c2
ρR0εnR̈, (3.6)

with

ε =
c2ρ

κp0

4π
3
R3

0N0, ω2
0 =

3κp0

ρR2
0
. (3.7)

N0 is a characteristic concentration constant, n = n(x) gives the normalized dimen-
sionless spatial distribution of the bubbles, ε is a small parameter, and ω0 equals the
linear resonance frequency of the bubbles (3.4) if surface tension is neglected.

(c) Bjerknes forces

A body in an inhomogeneous pressure field experiences a force in the direction
of lower pressure. In a gravitational environment, for instance, this leads to the
buoyancy force (which is neglected throughout this article). For bubbles in a sound
field, additional forces appear due to the oscillations of the pressure gradient and
the bubble volume. If the bubble is small compared to the typical spatial scale of
pressure variations (the wavelength λ = 2πc/ω), we can write this force known as
the Bjerknes force (Bjerknes 1906; Young 1989; Leighton 1994)

FB = −〈V (t)∇p(t)〉t, (3.8)

where V = 4
3πR

3 is the bubble volume, ∇p(t) denotes the gradient of the pressure
at the bubble’s position, and 〈·〉t indicates a time average.

In general, the Bjerknes forces are separated into primary and secondary com-
ponents, depending on the origin of the pressure gradient. Primary Bjerknes forces
relate to the gross incident sound field originally causing bubble oscillations. Sec-
ondary Bjerknes forces refer to the sound emitted from other bubbles, which is a
secondary effect. The primary Bjerknes forces act relative to the externally imposed
acoustic field, while the secondary Bjerknes forces act between bubbles.

The sign and magnitude of the forces depend very much on details of the bubble
oscillation. In the following, we study Bjerknes forces occurring for strongly nonlin-
ear oscillations and compare the results with approximations obtained for bubbles
oscillating harmonically. The nonlinear bubble dynamics is simulated by numerically
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integrating the Keller–Miksis model (3.1), and for the investigation of harmonic bub-
ble oscillations we use equation (3.3).

The inhomogeneous solution of the linear ordinary differential equation (3.3) is
given by R′(t) = R′A cos(ωt + ϕ) that is characterized by an amplitude R′A =
R′A(ω,R0) and a phase shift ϕ = ϕ(ω,R0). The linearized model tells us that bubbles
larger than linear resonance radius, Rr, oscillate in such a way that they have large
volume at high pressure phases (ϕ ∈ [0, π/2]), and smaller bubbles have large volume
during low pressure times (ϕ ∈ [π/2, π]).

The primary Bjerknes force acting on the harmonically oscillating bubble in a
standing sound field p(x, t) = p0 + Pa(x) cos(ωt), may be expressed as

FB1 = −1
2VA∇Pa cos(ϕ), (3.9)

where VA = 4πR2
0R
′
A denotes the amplitude of the linear volume oscillation, which is

phase shifted with respect to the pressure, V (t) = V0+VA cos(ωt+ϕ). With the phase
considerations above, the following result is obtained: for bubbles smaller than the
linear resonance radius, the force FB1 acts in direction towards the pressure antinode
(cos(ϕ) < 0), while larger bubbles (cos(ϕ) > 0) are attracted by the pressure node
(Leighton 1994). However, this well-known result is not strictly valid for nonlinear
bubble oscillations. Let us consider the vicinity of a pressure antinode where ALFs
appear. Figure 4a shows that bubbles of decreasing size are repelled for increasing
driving amplitude. The reason is that the relative phase between exciting pressure
and bubble response is affected by the amplitude of oscillation. The occurrence of
nonlinear resonances leads to a certain zigzag course of the border between attractive
and repulsive primary Bjerknes force. Near the centre of the diagram, chaotic bubble
oscillations and coexisting attractors cause a complicated pattern that is not fully
resolved. Note that above a pressure amplitude of about 180 kPa, only bubbles of
the order of micrometres in radius are still attracted by the antinode, which is in
striking contrast to the linear theory (Akhatov et al . 1997).

Similar strong effects of nonlinear oscillations have been found for the secondary
Bjerknes forces (Oguz & Prosperetti 1990; Mettin et al . 1997). The force of an
oscillating bubble ‘1’ on a neighbouring bubble ‘2’ is given to some approximation
by

FB2 = − ρ

4π
〈V̇1V̇2〉 x2 − x1

‖x2 − x1‖3 , (3.10)

where x1 and x2 denote the locations of the interacting bubbles. For harmonic bubble
oscillations we obtain

FB2 = −ρω
2

8π
V1AV2A cos(ϕ1 − ϕ2)

x2 − x1

‖x2 − x1‖3 , (3.11)

where V1A, V2A and ϕ1, ϕ2 are the amplitudes and the phases of the volume oscilla-
tions Vi(t) = Vi0 + ViA cos(ωt+ ϕi) (i = 1, 2), respectively. According to this result,
a bubble smaller than the linear resonance radius and a larger bubble repel each
other, while pairs of smaller or larger bubbles experience an attracting secondary
Bjerknes force. The inclusion of the nonlinearity, of a coupling of the oscillations, or
of shape distortions, for instance, can lead to considerable change of this situation.
We briefly outline the influence of strong nonlinear oscillation in equation (3.11) on
small spherical bubbles (Mettin et al . 1997). It is found that the magnitude of the
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Figure 4. (a) Effect of the primary Bjerknes force near a pressure antinode (ω = 2π · 20 kHz).
The dark regions in the plane of pressure amplitude, Pa, and bubble equilibrium radius, R0,
indicate attraction, the bright regions repulsion. The linear resonance radius (ca. 163 µm) is
indicated by the dark horizontal line at R0 = 162 µm. (b) Secondary Bjerknes forces between
two neighbouring bubbles in the sound field (Pa = 112 kPa, ω = 2π·20 kHz). The axes denote the
equilibrium radii: the dark area indicates mutual attraction; the bright area mutual repulsion.

secondary Bjerknes force increases by orders of magnitude in comparison to linear
theory, and that unforeseen mutual repulsion of bubbles may occur. A depiction in
the R10–R20-plane is given by figure 4b. For fixed driving amplitude and frequency,
the attraction and repulsion between bubbles is coded by dark and bright areas,
respectively. The bubble radii below 10 µm are chosen because of their supposed
relevance in the cavitation structures (see below).

These forces between oscillating bubbles may be further modified by the presence
of additional neighbours, the motion of the bubbles relative to the liquid, or a time
delay of the mutual action due to a finite sound speed. These effects are the subject
of ongoing and future investigations.

(d) Nucleation, growth, coalescence and destruction of bubbles

There exist several mechanisms by which the bubbles in acoustic cavitation can
be created (see, for example, Brennen 1995). All of them may play a role in typical
structure-formation experiments. In particular, nucleation from the resonator wall
and from contaminating tiny solid particles as well as from submerged microbubbles
seems to be important. Microscopic voids of gas or vapour usually dissolve because
of the surface tension of the liquid, but they can be stabilized against dissolution
by surface active molecules, or by being embedded in particle crevices. Generally,
microscopic sources of cavitation bubbles are termed cavitation nuclei.

There are only sparse measurements with respect to the bubble sizes participating
in cavitation streamers. A recent study employing holographic high-speed cinematog-
raphy (Billo 1997) reports bubble diameter distributions that peak between 30 and
150 µm in the expanded bubble-oscillation phase. Using typical parameter values of
that experiment for pressure amplitude and frequency, the equilibrium radii of the
bubbles can be calculated back to range between 1 and 10 µm. Such small values are
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not significantly different from the data for general cavitation nuclei sizes (Brennen
1995).

In the presence of the sound field, microbubbles may expand to many times their
equilibrium size during the low-pressure phase. In addition, they may grow slowly
over many cycles of acoustic forcing by the influx of dissolved gas in the liquid
in a process called ‘rectified diffusion’ (Young 1989; Leighton 1994). Bubbles that
grow to many times their equilibrium sizes become susceptible to surface instabilities
(Plesset 1954; Strube 1971; Prosperetti 1977) and may break up. The remnants of the
destroyed bubbles consist of smaller bubbles and microbubbles that either dissolve
or function as cavitation nuclei. The critical bubble size for break up is a decreasing
function of the driving pressure amplitude, suggesting again that micron-sized bubble
populations dominate in the high acoustic pressure fields.

In addition, there is a hydrodynamic effect of a fast-moving oscillating bubble on
the liquid that is difficult to take into account. We suspect that the inwards stream-
ing bubbles trigger a flow of liquid in the same direction, leaving the space between
the filaments for outflowing liquid. Furthermore, a preferred (hydrodynamically sup-
ported) bubble nucleation in the wake of a streaming bubble might be possible. Such
an effect would contribute to a stabilization of existing filament patterns.

(e) Added mass and drag force

A moving bubble generates a certain inertia and experiences a resistive friction
force from the viscosity of the fluid. The inertia stems only partly from the mass
of the gas inside the bubble; a much larger share is due to the inertia of the liquid
streaming around it. This added mass for a rigid, spherical body amounts to half of
the mass of the displaced liquid, and thus the gas mass is usually neglected. For an
oscillating bubble, however, the determination of the effective added mass becomes
more complicated, and difficulties increase if non-spherical shapes are considered.

The situation is similar for the viscous drag force. Only for simple conditions
like a steady flow of low Reynolds number around a rigid sphere can the drag be
predicted accurately. Higher streaming velocities, oscillating or non-spherical body
shapes render an analytical treatment much more involved. Closer investigation of the
hydrodynamic force on a moving oscillating spherical bubble reveals, for instance,
that the bubble-wall velocity contributes to the added mass, and that the wake
behind the bubble leads to the Basset force, a memory term adding to the viscous
drag force (see, for example, Brennen 1995; Nigmatulin 1991).

Experimental investigations of these phenomena are not very numerous and, there-
fore, we refer to the Stokes friction force for low Reynolds number in the continuum
model, and to experimental data based on rising non-oscillating bubbles in the par-
ticle approach.

4. Continuum description

In this section, a continuum model is presented for the interaction between the sound
field and the bubble distribution. It consists of three coupled partial differential
equations for the sound-field amplitude, the bubble velocity and the bubble density.
A more detailed description of this model can be found in Akhatov et al . (1996). A
linear stability analysis based on this model shows that a homogeneous monodisperse
distribution of bubbles is unstable in the presence of an acoustic wave.
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(a) Sound-field amplitude

When considering the spatio-temporal dynamics of bubbly liquids, one has to
include the relative motion between the two phases. However, the process of redis-
tribution of bubbles is a slow process on a time-scale much larger than the period of
the acoustic field. This is confirmed by the experiments described in § 2. Therefore,
assuming only weak pressure disturbances, equation (3.6) should remain valid if we
allow for a slow time-scale variation of the number density n(x). In the absence of
bubbles (N0 = 0), a plane acoustic wave propagating along the z-axis is an exact
solution of equation (3.6):

p = p0 + 1
2

{
W0 exp

[
iω
(
t− z

c

)]
+ c.c.

}
, (4.1)

where W0 is the constant complex wave amplitude and ‘c.c.’ denotes the complex
conjugate. Let us consider small perturbations of W0 perpendicular to the direction
of propagation. To account for a slow redistribution of bubbles, we approximate the
solution of equation (3.6) in the form

p = p0 + 1
2

{
W (εt,

√
εx,
√
εy) exp

[
iω
(
t− z

c

)]
+ c.c.

}
, (4.2)

where ε, as taken from (3.7), is small for typical values of the parameters†. In order
to obtain an analytic expression for the right-hand side of equation (3.6), we consider
bubble oscillations of small amplitude that are governed by the linearized equation
(3.3). Since W is a quantity slowly varying in time and space, the solution to equa-
tion (3.3) can be approximated by

R′ = −1
2

1
ρR0(ω2

0 − ω2)

{
W (εt,

√
εx,
√
εy) exp

[
iω
(
t− z

c

)]
+ c.c.

}
, (4.3)

where damping terms have been neglected (α = 0). Substituting equations (4.2)
and (4.3) into equation (3.6) and neglecting terms O(ε2), yields, in the low-frequency
limit ω � ω0, a partial differential equation for the complex wave amplitude,

i
∂w

∂ξ
=
∂2w

∂η2 +
∂2w

∂ζ2 + nw, (4.4)

where dimensionless variables ξ, η, ζ and w have been introduced with

ξ = 1
2ωεt, η =

ω

c

√
εx, ζ =

ω

c

√
εy, w =

W

W0
. (4.5)

Equation (4.4) is essentially a nonlinear Schrödinger equation with the potential
being replaced by the number density n.

(b) Bubble velocity

All bubbles of a volume V experience the primary Bjerknes force (3.8). From (4.2)
and (4.3) we derive (Akhatov et al . 1996)

FB = γ1

(
∂(|W |2)
∂η

,
∂(|W |2)
∂ζ

, 0
)
, γ1 =

3V0

4ρR2
0(ω2

0 − ω2)
ω

c

√
ε. (4.6)

† For example, ε ∼ 0.04 for c ∼ 103 m s−1, ρ ∼ 103 kg m−3, κ ∼ 1, p0 ∼ 105 N m−2, R0 ∼ 10−5 m
and N0 ∼ 109 m−3.
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To account for interactions between bubbles and liquid, we include the Stokes friction
force FS and the added mass force FM in their simplest form:

FS = −6πµlR0U , (4.7)

FM = −1
2ρV0

∂U

∂t
. (4.8)

Here, U denotes the slow average drift velocity of the bubbles. We neglect the mass
of the gas inside the bubble, secondary Bjerknes forces and buoyancy forces to write:

FB + FS + FM = 0. (4.9)

This yields an equation of motion for the slow drift of bubbles in the following form:

τ2
∂u

∂ξ
+ u = γ∇ηζ(|w|2), (4.10)

where we introduce the quantities

u =
U

U∗
, U∗ = 1

2c
√
ε, γ =

γ1

6πµlR0

W 2
0

U∗
, τ2 =

ρV0

24πµlR0
ωε. (4.11)

(c) Bubble density

When considering the slow evolution of the bubble concentration, one has to take
into account that bubbles usually dissolve after some time without an acoustic field.
Therefore, we assume an exponential decay of the number density in the absence of
a sound field. We also take into account the generation of bubbles due to the acous-
tic driving. For small pressure amplitudes, the energy flow supporting the bubble
generation during one period is proportional to the sound-field intensity (Nigmat-
ulin 1991). High intensities lead to a saturation value N∞ of the bubble density
due to the limited amount of dissolved gas in the liquid. These effects are included
heuristically in the continuity equation for the number density:

∂n

∂ξ
+∇ηζ(nu) = −n− f(|w|2)

τ1
,

f(|w|2) = A2
∞[1− exp(−|w|2/A2

∞)].

 (4.12)

τ1 is a dimensionless characteristic time of dissolution and the function f(|w|2)
describes the saturation during the process of bubble generation with

lim
|w|→∞

f(|w|2) = A2
∞ = N∞/N0.

(d) Stability analysis

An analytic solution of the continuum model (4.4), (4.10) and (4.12) is given by

A = A0 = const., n = f(A2
0), Θ = −f(A2

0)ξ, ux = 0, uy = 0,
(4.13)

where the amplitude A and the phase Θ are defined by

w = A(ξ, η, ζ) exp(iΘ(ξ, η, ζ)). (4.14)

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Spatio-temporal cavitation bubble clouds 325

stable unstable

50

40

30

20

10

0
0 5 10

A
15 20 25

K

0
2

A*
2

Figure 5. Stability diagram for periodic perturbations of the homogeneous solution (4.13) of
the continuum model (τ1 = 1, τ2 = 0.1, γ = 0.001, A∞ → ∞). Perturbations with amplitudes
A0 < A∗ and sufficiently large wavenumbers ‖K‖ = [k2

x + k2
y]1/2 decay. The homogeneous

solution is unstable for long wavelengths (i.e. ‖K‖ small) or amplitudes A0 above the threshold
A∗ indicated by the vertical solid line. The dashed lines give three values of A0 that are used
for figure 6.

Equations (4.13) and (4.14) describe a monochromatic wave in a mixture with a
homogeneous and stationary bubble distribution. The evolution of small periodic
perturbations of this uniform solution,

Ã

Θ̃
ñ
ũx
ũy

 =


Â

Θ̂
n̂
ûx
ûy

 exp(σξ + iKxη + iKyζ), (4.15)

is described by a linearization of (4.4), (4.10) and (4.12). The stability of the uniform
solution depends on the sign of the real part of the growth-rate coefficient σ that
turns out to be positive for long-wavelength perturbations as is shown in the stability
diagram in figure 5. For A0 larger than a threshold value A∗, the uniform solution is
unstable for all wavenumbers K = (Kx,Ky). Amplitudes A0 smaller than A∗ lead to
an effective pattern selection, since, in this case, perturbations with short wavelength
are decreasing. The remaining long-wavelength instability may be interpreted as
the origin of structure formation, where, additionally, different growth rates of the
unstable modes have to be taken into account. In figure 6, these growth rates are
shown as a function of ‖K‖ for three values of the amplitude A0.

(e) Numerical simulations

In this section we present numerical simulations based on the model equations
(4.4), (4.10), (4.12) for a one-dimensional wavefront propagating along the z-axis in
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Figure 6. Growth rates σ of (unstable) modes versus wavenumber ‖K‖ for A0 = 1, 7, 23 and
τ1 = 1, τ2 = 0.1, γ = 0.001, A∞ → ∞ (compare with figure 5). If the wavenumber ‖K‖ of the
perturbation is sufficiently small, also higher spatial harmonics with 2‖K‖, 3‖K‖, etc., may
grow due to the long-wavelength instability.

a ‘channel’ of width L = 2π/k. The boundary conditions are given by

∂w

∂η
(ξ, 0) = 0 =

∂w

∂η
(ξ, L),

u(ξ, 0) = 0 = u(ξ, L),

n(ξ, 0) = 0 = n(ξ, L),

and the following initial conditions are used:

w(0, η) = w0[1 + 1
2w1[1− cos(η)]], η ∈ [0, L],

u(0, η) = 0,

n(0, η) = |w(0, η)|2,
with w0 = 1 and w1 = 0.05. A typical transient following the initial (linear) long-
wavelength instability is shown in figure 7.

The instability leads to self-focusing of the acoustic wave and self-concentration of
bubbles. Bubbles are driven to regions of higher sound-field amplitude that causes
a decrease of sound velocity. Therefore the amplitude increases again until nonlin-
ear effects lead to a saturation of the self-concentration effect. As τ1 describes the
characteristic lifetime of bubbles, an increase of τ1 leads to more strongly damped
oscillatory transients that converge to a quasi-asymptotic solution.

Due to nonlinearity, higher unstable modes can be excited. Examples with two
unstable modes are given in figure 8, where nonlinear-mode competition occurs
between the first (k = 0.6) and the second mode (k = 1.2).

Finally, two limitations of the present model need to be addressed. The strong
increase of the local bubble concentration, as shown in figures 7 and 8, may violate
the assumptions made for the derivation of the model. The second point concerns
also the case of high bubble concentrations and high sound-field amplitudes, where
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Figure 7. Spatio-temporal evolution of the magnitude of (a), (b) the sound-field amplitude |w|,
(c), (d) the bubble density n and (e), (f) the bubble velocities u for τ1 = 1, τ2 = 0.1, γ = 0.001,
A∞ → ∞, K = 1 ((a), (c), (e)); and τ1 = 0.01, τ2 = 0.01, γ = 0.001, A∞ → ∞, K = 1
((b), (d), (f)).

one has to account for direct bubble–bubble interactions (secondary Bjerknes force)
that are not yet included in the present model.

5. Particle model

In this model, the individual bubbles in the liquid are treated as moving particles.
This idea is obvious if one is interested in the motion of only a few bubbles, and
here we try to extend it to a complex multibubble system. Pioneering work in this
direction by Hinsch (1976) has shown good agreement with experiments in the linear
oscillation regime†.
† Static bubble patterns have been simulated using a diffusion-limited aggregation scheme (Parlitz et

al . 1995).
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Figure 8. Spatio-temporal evolution of the magnitude of (a), (b) the sound-field amplitude |w|,
(c), (d) the bubble density n and (e), (f) the bubble velocities u for τ1 = 0.001, τ2 = 0.01,
γ = 0.001, A∞ → ∞, K = 0.6 ((a), (c), (e)); and τ1 = 0.005, τ2 = 0.01, γ = 0.001, A∞ → ∞,
K = 0.6 ((b), (d), (f)).

The following forces acting on each bubble are considered: added mass force FM;
primary Bjerknes force FB1; secondary Bjerknes force FB2; and a drag force FD.
In contrast to the continuum approach, the influence of the bubble density on the
exciting sound field is neglected. Further, we assume a stationary non-streaming liq-
uid in a resonator containing a standing wave pa(x; t) = Pa(x) cos(ωt). The model
is limited to spherical bubbles of the same equilibrium size R0. However, we allow
for strongly nonlinear radial bubble oscillations, which is an essential point. The
time-varying radii R(t) are computed by the Keller–Miksis model, equations (3.1)
and (3.2), for the local driving pressure at the bubbles’ positions. We consider slowly
moving bubbles, i.e. bubbles do not encounter different sound-field amplitudes during
one radial oscillation period (which is assumed equal to the sound-field oscillation
period T = 2π/ω for all bubbles). Then, the forces are determined as follows, involv-
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ing time averaging over T :

F iM = 1
2ρ〈Vi(t)〉T v̇i, (5.1)

F iB1 = −〈∇pa(xi; t)Vi(t)〉T , (5.2)

F iB2 =
∑
j 6=i

ρ

4π
〈V̇i(t)V̇j(t)〉T dij

‖dij‖3 ≈ f
i
B2

∑
j 6=i

dij
‖dij‖3 , f iB2 =

ρ

4π
〈V̇ 2
i (t)〉T , (5.3)

F iD = −(β1〈R(t)〉T + β2〈R(t)〉2T ‖vi‖)vi. (5.4)

Here, i indexes the bubbles with positions xi, velocities vi, and volumes Vi. dij =
xj−xi is the vector from bubble i in direction to bubble j. The drag force FD is fitted
to an experimentally based formula from Crum (1975) leading to the coefficients
β1 = 0.015 N s m−2, β2 = 4000 N s2 m−3. The equations of motion

F iM = F iB1 + F iB2 + F iD,

are solved by a semi-implicit Euler method for N bubbles.
According to the standing pressure wave in the container, the driving amplitude

varies in space. Due to this sound-field variation, R(t) and the resulting forces can
change dramatically when a bubble moves to a different position. To keep the com-
putations simple and fast, we introduced the approximation of equal bubble volumes
for the summation of FB2 in equation (5.3). Additionally, the time-averaged values
in equation (5.1)–(5.4) are tabulated on a grid in space, and linear interpolation is
used between the grid points. Figure 9 illustrates the strong quantitative and even
qualitative variation of the primary and secondary Bjerknes forces for increasing
pressure amplitude. The calculations have been done for a cubic resonator (edge
length a = 6 cm, ω = 2π ·21.66 kHz according to the (111) mode) and the fixed bub-
ble size of R0 = 5 µm to come close to the described experiment (figure 2). The first
component of the primary Bjerknes force, FB1,1, shows increasing attraction (neg-
ative values) towards the pressure antinode (the origin) for an increasing driving
pressure up to 160 kPa (the negative values associated with 100 kPa are very close
to zero in this scaling). The sign of the force near the origin changes, however, when
the amplitude is further increased up to 190 kPa: the antinode becomes repulsive
for the bubble size considered. Since the force is still attractive in the outer regions
of the standing wave, a stable equilibrium surface forms around the antinode. This
evolution is accompanied by an increase of the secondary Bjerknes forces by orders
of magnitude.

In the model, creation of bubbles takes place near some randomly chosen off-
centre sites. This is similar to the experimental observation of bubble occurrence.
Coalescence is modelled by a certain chance of annihilation after each time-step if
another bubble is located closer than 2〈R(t)〉T . If a bubble vanishes, a new one
appears at a creation site. Thus, the total number N of bubbles is kept constant.

In figure 10 we compare typical results from the model with structures obtained in
the experiment. The left-hand column of pictures corresponds to a central pressure
amplitude of Pa = 130 kPa, the right-hand column to Pa = 190 kPa. The upper pic-
tures show simulated bubble tracks in three dimensions, and the middle row depicts
snapshots from the model projected onto two dimensions. The lower pictures present
snapshots from the experiment that have been black/white inverted for better visi-
bility. The parameters of the simulation correspond to figure 9 and strongly resemble
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Figure 9. First component FB1,1 of the primary Bjerknes force (a) and secondary Bjerknes force
coefficient fB2 (b) versus the first coordinate x1 in a cubic resonator (see text; x2 = x3 = 0
in this picture). The maximum pressure amplitudes, Pa, ranges from 100 to 190 kPa. Positive
values of FB1,1 indicate repulsion from the antinode. Note the logarithmic scaling in (b).

the experimental cubic resonator setup. Only the pressure amplitudes in the exper-
iment might have differed slightly from the indicated values, and the cuvette has
been chosen to be a little larger in the simulation to come close to the experimen-
tally observed resonance frequency (in the range of 21 kHz). The simulated bubbles
(N = 150, R0 = 5 µm) originate at 20 fixed creation sites at 2 cm distance from the
centre (the antinode). The bubble traces in the upper row of figure 10 cover a total
simulation time of 0.4 s (130 kPa, left) and 0.1 s (190 kPa, right), respectively. These
periods of time seem short enough to justify non-moving creation sites.

For the lower pressure, all simulated bubbles move more or less straight to the
centre at velocities not exceeding 0.1 m s−1. The geometry corresponds well with the
physical features shown in the experimental snapshot although the nebulous centre
is not captured by simulation.

The situation is different at a higher pressure amplitude. At 190 kPa bubbles move
faster (up to 0.5 m s−1) and cluster off-centre; the antinode is void, and the creation
sites appear interconnected by shortcuts. The experiment indeed shows an analo-
gous transition for increasing driving from one central cluster to many fast-drifting
non-central smaller clusters. This scenario is difficult to image experimentally, but
several small bubble clusters can be recognized as darker spots on the experimental
snapshot (figure 10, bottom right). There are two effects contributing to this transi-
tion phenomenon: the antinode becomes repulsive for increasing pressure (compare
figure 9a), and the secondary Bjerknes force increases by several orders of magnitude
(see figure 9b). Therefore, the bubbles attract each other earlier when streaming from
the outside and cluster near the stable equilibrium surface around the antinode.
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Figure 10. Typical examples of calculated bubble traces and snapshots compared to experimental
structures. Left column: medium pressure amplitude (130 kPa); right column: high pressure
amplitude (190 kPa). Top row: simulated bubble tracks (150 bubbles, originating from 20 fixed
creation points). Middle row: snapshots from the simulations above. Bottom row: experimental
photographs at approximately the same conditions and dimensions as in the simulations.
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It is interesting to note that, if many bubbles were placed in the centre where
fB2 is largest, their mutual attraction could possibly outrange the primary Bjerknes
repulsion and lead to a bistability of central and off-centred clustering structure.
Indeed, an intermittency on a time-scale of seconds between a populated and a void
centre can be observed in our resonator experiments for certain parameters (without
changing the pressure from the outside).

We suspect influence of the bubble distribution on the sound field, leading to
effective pressure amplitude changes by impedance mismatch, or streaming of the
liquid in the container, to be some of the possible underlying mechanisms inducing
the transition between the multistable patterns.

The particle model with a few fixed bubble sources can apparently mimic the
emergence of different types of structures in an acoustic resonator standing-wave
experiment, as comparison of simulated and experimental patterns in figure 10 sug-
gests. Furthermore, we have found that the simulated pattern of bubble tracks does
not vary much within a certain range of the bubble quantity N if a sparse num-
ber of creation sites is used that stays fixed in time (a pattern transition might be
modelled by variable creation sites, which is beyond the scope of this article). There-
fore, one gets a good impression of the structure formation just by looking at the
bubble traces. However, the full process is spatio-temporal and a three-dimensional
(holographic) movie would be the most appropriate visualization tool.

We tried to use observed or estimated real-world mechanisms, dimensions and
quantities in the particle model wherever possible, but this approach is still more
of a cartoon than a one-to-one reproduction of the structure formation in acous-
tic cavitation. Variations of the bubble equilibrium size, shape oscillations (see, for
example, Blake, this issue) and shedding of microbubbles, liquid streaming and exact
treatment of very close bubbles have not been incorporated into the model (e.g. we
have modified the secondary Bjerknes force law for very near distances in a heuris-
tic manner to avoid unnatural divergencies in the simulation). This simple model
can, however, already reproduce gross features of different pattern types. We there-
fore draw the main conclusion from our particle model studies that a strong spatial
variation of Bjerknes forces, according to nonlinear spherical-bubble oscillations in
a standing pressure wave, is consistent with experimental observations. This holds
both qualitatively (the types of emerging patterns) and quantitatively (the involved
time-scales and pressure amplitude values), and thus gives indication for a correct
treatment of the Bjerknes forces of strongly oscillating bubbles (without a direct
measurement).

6. Conclusion

Structure formation processes in cavitation bubble fields are a challenging physi-
cal phenomenon that is interesting from a fundamental point of view as well as for
practical applications. Experimental observations indicate that complex dynamics on
different time-scales and spatial scales occur that are mutually coupled. The collec-
tive behaviour observed on the macroscopic scale is a result of different processes on
microscopic scales that have to be identified, investigated and described in order to
derive theoretical models. Some of these building blocks have been briefly discussed
in § 3. In §§ 4 and 5, two approaches for modelling the experimental observations
have been presented: a continuum model and a particle model. In the continuum
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model, the bubbly liquid is treated as a quasi-continuum and a set of coupled partial
differential equations is derived describing the propagation of an acoustic wave and
the time evolution of the bubble distribution. The main result is a long-wavelength
instability of the homogeneous solution and a self-concentration effect of the bub-
ble distribution. The particle approach presented in § 5 is based on the microscopic
dynamics of individual oscillating bubbles that are treated as moving objects. Numer-
ical simulations provide bubble patterns that are in good qualitative agreement with
experimental results, although only some of the known physical mechanisms have
been incorporated into the model as yet. Future improvements of the models should
include, for example, provision for the (re)action of the bubble distribution on the
sound field in the particle approach, or inclusion of secondary Bjerknes forces in
the continuum approach. Furthermore, both models could be generalized to the case
of bubbles of different equilibrium size. Another important aspect not yet included
is the streaming of the liquid due to moving bubbles or nonlinear acoustic effects.
Since the streamers in the ‘acoustic Lichtenberg figures’ are only sparsely populated,
a combination of continuum and particle model might be a promising prospect for
future work.

On the microscopic level, more detailed experimental investigations are necessary
to improve our knowledge about acoustic streaming and fluid motion, drag and added
mass forces of oscillating bubbles, Bjerknes forces acting on non-spherical bubbles or
bubbles that are located very close together, and the interaction and synchronization
of bubble oscillations. The lack of control and reproducibility of suitable events might
be overcome by single-bubble experiments and laser-induced cavitation bubbles (Ohl
et al ., this issue). Furthermore, combined optical and acoustic measurements may
provide even more interesting details of this complex physical system.
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